Transcribed Image Text: Let z = g(x, y) = f(3 cos(xy), y + e#y) provided that f(3,7) = 4, f1(3,7) = 2, f2(3, 7) = 3.
i) Find 91 (0, 6).
i) Find g2 (0, 6).
92(
iii) Find the equation of the tangent plane to the surface z = f(3 cos(ry), y+ e™v) at the point (0, 6).
O i) 18, ii) 3, iii) 18x + 3y – z = 14
O i) 18, ii) 3, iii) 18x – 3y – z = 6
O i) 18, ii) 9, iii) 18x + 9y + z = 50
O i) 54, ii) 3, iii) 54x – 3y – z = -40
O i) -36, ii) 9, i) -36x + 9y + z = -22
O i) 54, ii) -6, iii) 54x -6y – z = -22
О) -18, it) -6, ii) -18x -6у – z 3 14
O i) -36, ii) 12, iii) -36x + 12y – z = 14